Gravitino

Aspeto mover para a barra lateral ocultar

Na física de partículas, o gravitino (

), é a s-partícula supersimétrica do graviton. O gravitino foi previsto pela combinação da teoria da relatividade geral e da supersimetria. Segundo a teoria existente, se o gravitino existir ele deve ser uma partícula elementar férmion com spin igual a 3⁄2 e portanto deve obedecer a equação de Rarita–Schwinger.

Definição

O campo do gravitino é descrito como ψ μ α {\displaystyle \psi _{\mu \alpha }} com um índice de quadrivetor μ = 0 , 1 , 2 , 3 {\displaystyle \mu =0,1,2,3} e um índice spinor α = 1 , 2 {\displaystyle \alpha =1,2} . Onde μ = 0 {\displaystyle \mu =0} se obteriam modos de normas negativas, como em qualquer partícula sem massa com spin maior ou igual a 1. Estes modos não são físicos e para que se mantenha a consistência deve existir uma simetria de gauge que cancele estes modos, ou seja:

δ ψ μ α = ∂ μ ϵ α {\displaystyle \delta \psi _{\mu \alpha }=\partial _{\mu }\epsilon _{\alpha }}

onde ϵ α ( x ) {\displaystyle \epsilon _{\alpha }(x)\,} será uma função spinor do espaço-tempo.

Então o gravitino seria o férmion que mediaria as interações da supergravidade, semelhante ao fóton que media o electromagnetismo e o graviton que se pressupõe mediar a gravidade. Sempre que a supersimetria for quebrada segundo as teorias da supergravidade, ele adquire massa que seria diretamente relacionado à escala da quebra da supersimetria.

Como solução proposta ao problema de ajustamento do modelo padrão, e para que se consiga a grande unificação, a escala de quebra da supersimetria necessita ser puxada para abaixo do nível do elétron-volt.

Problema cosmológico

Se o gravitino realmente existir e possuir massa da ordem de alguns elétrons-volt, então ele criará um novo problema para o modelo padrão da cosmologia.

Uma possibilidade é que o gravitino seria estável. Se isto se confirmar e a paridade-R for conservada, o gravitino será um candidato à matéria escura e teriam sido criados nos primórdios do universo. Entretanto o que se acredita como mais provável na atualidade é que a densidade dos gravitinos é muito superior a densidade da matéria escura.

Uma outra possibilidade é que o gravitino seja instável e se isto se confirmar ele decairá em partículas menores e não contribuirá para a densidade da matéria escura. Entretanto, já que seu decaimento ocorreria através das interações gravitacionais, sua vida média seria muito longa, da ordem de M p l 2 / m 3 {\displaystyle M_{pl}^{2}/m^{3}} em unidades naturais, onde m {\displaystyle m} é sua massa e M p l {\displaystyle M_{pl}} é a massa de Planck. Para uma massa da ordem de elétron-volt sua vida média seria aproximadamente 10 5 {\displaystyle 10^{5}} segundos, muito após a nucleossíntese primordial. De fato acreditasse que se este fosse o caso o universo seria unicamente formado por hidrogênios e a formação estelar seria provavelmente impossível.

Uma possível solução para o problema cosmológico é que a paridade-R possa ser levemente violada e o gravitino seja a partícula supersimétrica mais leve. Esta combinação causaria com que quase todas as partículas supersimétricas do início do universo a decair em partículas do modelo padrão através das interações de violação da paridade-R. Uma pequena fração destas partículas decairiam em gravitinos, os quais teriam uma vida média superior a idade do universo pela supressão da taxa de decaimento pela escala de Planck.

Referências

  1. T. Moroi, H. Murayama (1993). «Cosmological constraints on the light stable gravitino». Tohoku University (em inglês): 289-294 
  2. M. Endo (12 de junho de 2006). «Moduli Stabilization and Moduli-Induced Gravitino Problem» (PDF) (em inglês) 
  3. F. Takayama & M. Yamaguchi (22 de maio de 2000). «Gravitino Dark Matter without R-parity» (em inglês) 

Ver também

Ligações externas